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Abstract

We present a novel multistream network that learns robust eye
representations for gaze estimation. We first create a synthetic
dataset containing eye region masks detailing the visible eye-
ball and iris using a simulator. We then perform eye region
segmentation with a U-Net type model which we later use to
generate eye region masks for real-world eye images. Next,
we pretrain an eye image encoder in the real domain with self-
supervised contrastive learning to learn generalized eye rep-
resentations. Finally, this pretrained eye encoder, along with
two additional encoders for visible eyeball region and iris,
are used in parallel in our multistream framework to extract
salient features for gaze estimation from real world images.
We demonstrate the performance of our method on the EYE-
DIAP dataset in two different evaluation settings and achieve
state-of-the-art results, outperforming all the existing bench-
marks on this dataset. We also conduct additional experi-
ments to validate the robustness of our self-supervised net-
work with respect to different amounts of labeled data used
for training.

1 Introduction
Eye gaze acts as a non-verbal behavioral sign that can in-
dicate human intention, attention, and interests. In addition
to helping us perceive the environment, gaze has various ap-
plications in human behaviour analysis (Ishii et al. 2016),
human computer interaction (HCI) (Andrist et al. 2014), hu-
man robot interaction (HRI) (Moon et al. 2014), cognitive
science (Amadori et al. 2021), and virtual reality (Konrad,
Angelopoulos, and Wetzstein 2020). Thus, accurate estima-
tion of gaze has gained attention over the years, making gaze
estimation a well-established area of research.

Many prior works in gaze estimation relied on lightweight
machine learning algorithms (Lu et al. 2011; Wood et al.
2016b). They were mostly biased with constrained environ-
ments and fixed head-pose. Recent methods (Zhang et al.
2015, 2017; Park et al. 2018) have leveraged deep neural net-
works to perform gaze estimation and shown performance
improvement. Despite the progress, there still exists a num-
ber of underlying open problems:

• Eye Region Registration: The geometric shape and ori-
entation of particular regions of the eye can provide
strong information cues for gaze estimation. Thus, ac-
curate segmentation of eye regions such as the iris could

enhance gaze estimation. Most existing gaze datasets do
not provide ground truths that could be readily used for
eye region segmentation.

• Labeled Data: As is the case with any machine learn-
ing problem, obtaining labeled data for gaze estimation
can be difficult, time-consuming, and expensive. This is
particularly challenging for gaze estimation as eye im-
ages are mainly cropped from larger facial images, mak-
ing them small and with low resolutions, which in turn
makes labeling more difficult and prone to errors.

In this work, we tackle these challenges by proposing a
model for self-supervised gaze estimation. Our proposed so-
lution first performs eye region segmentation using a U-Net
type network (Ronneberger, Fischer, and Brox 2015) exclu-
sively trained on a synthetic dataset created using UnityEyes
(Wood et al. 2016b). This eye segmenter learns to create eye
masks detailing the visible eyeball and the iris based on the
synthetic dataset, which we later use to generate eye masks
for the real dataset. This domain transfer is a necessary step
in our pipeline as large gaze datasets with ground-truth eye-
ball and iris segment labels do not exist. Hence the synthetic
dataset was created with these labels. We then propose a
multistream gaze estimator network which we first pretrain
using self-supervised contrastive learning and then fine-tune
for gaze estimation. The multistream gaze estimator network
takes a single eye image and corresponding eye masks (cre-
ated by the eye segmenter) as input and regresses the 3D
gaze vectors.

In a nutshell, we make the following contributions: (1)
We are the first to propose the usage of eye region masks
as a feature input for gaze estimation. To effectively train
a model for eye region segmentation on real images, we
generate and use a synthetic dataset, which we then use for
segmentation in the real domain. (2) We introduce a novel
multistream deep neural network that utilizes both appear-
ance and geometric factors by extracting features from raw
eye image and eye masks independently to perform gaze es-
timation. We pretrain this model in a self-supervised man-
ner for better generalization and reduced reliance on labels.
Our model outperforms the existing supervised methods on
a benchmark dataset.



2 Related Work
Gaze Estimation. Gaze estimation can be categorized into
three different approaches: feature-based, model-based, and
appearance-based. Feature-based methods (Huang et al.
2014; Xiong et al. 2014) generally rely on hand-crafted fea-
tures such as pupil centers, eye corners, and iris edges ex-
tracted from eye images. Model-based approaches (Wood
et al. 2016a; Wood and Bulling 2014; Park et al. 2018) on
the other hand, aim to fit 3D eye models to eye images.
Finally, appearance-based gaze estimation methods (Baluja
and Pomerleau 1994; Tan, Kriegman, and Ahuja 2002) take
raw eye images and learn to map gaze as a 2D point or a 3D
angular vector.

Recent works on gaze estimation (Zhang et al. 2015,
2017; Park, Spurr, and Hilliges 2018) rely on Convolutional
Neural Networks (CNNs) and have shown significant perfor-
mance improvements. A multitask learning network was de-
veloped in (Yu, Liu, and Odobez 2018) where eye landmark
detection was performed as an auxiliary task. In (Krafka
et al. 2016), a multistream strategy was proposed where sep-
arate convolutional feature extractors were used for both eye
and face images. The approach improved on the results of
(Zhang et al. 2015) by a large margin. In (Wood et al. 2016b)
a real-time synthetic eye image simulator, UnityEyes, was
developed to generate millions of synthetic images to create
scope for domain transfer learning in gaze estimation. This
work shows competitive performance in cross-dataset exper-
iment. In (Shrivastava et al. 2017) the domain gap between
synthetic and real eye images was addressed and reduced by
domain adversarial learning. In a subsequent work by (Lee,
Kim, and Suh 2018), the domain adaptation results were fur-
ther improved by leveraging bidirectional mapping between
synthetic and real domains.
Contrastive Learning. Contrastive learning is primarily a
self-supervised learning (SSL) method which aids deep neu-
ral networks to learn a better latent representation by utiliz-
ing augmented unlabeled data. A recent contrastive learning
method, SimCLR (Chen et al. 2020), demonstrates that by
applying contrastive loss and maximizing the agreement be-
tween two augmented versions of the same image, it can fa-
cilitate neural networks to learn more useful visual represen-
tations. In (Grill et al. 2020) two neural networks were used
which are referred to as online and target networks, where
the online network predicts the output representation of the
target network given two augmented versions of the same
image as input. Recent applications of contrastive learn-
ing include medical image segmentation (Chaitanya et al.
2020; Zhao et al. 2021), facial expression detection (Roy and
Etemad 2021), pose estimation (Spurr et al. 2021), and oth-
ers. Nonetheless, despite the high likelihood that contrastive
learning could aid in better generalization of gaze estimators
in dealing with challenging scenarios and low quality inputs,
it has not yet been explored in this area.

3 Method
Model Structure and Overview. We aim to develop a gaze
estimator that can focus on salient regions of the eye, which
we hypothesize contain important gaze-related information.

Table 1: Description of transformations.

Transformations Parameters
Gaussian noise σ = (0− 10.0), µ = 0
Gaussian blur σ = (0− 2.0), filter size = (3× 3)
Cutout h,w = (0− 10.0) px
Downscale (1x− 2x)
Random lines (0− 2)
Contrast change -

While one approach would be to rely on eye landmarks (Park
et al. 2018), landmark detection is time-consuming and sen-
sitive to noise. Hence, to focus the learning of the gaze es-
timator network without the need to detect individual and
fine-grained landmarks, we rely on the iris and visible eye-
ball masks, in addition to the whole image of the eye. Ac-
cordingly we design a multistream pipeline to learn repre-
sentations from each of these three inputs independently,
which can then be combined for gaze estimation. First, an
eye segmentation module is trained to detect the visible eye-
ball and the iris masks. As gaze datasets with ground-truth
labels for eyeball and iris regions are very rare, we train
the eye segmenter on an auxiliary synthetic dataset, which
we discuss in detail later in Section 4. The output masks
are then used to train two encoders for learning representa-
tions from the iris and visible eyeball segments as two of
the three streams of our multistream pipeline. Next, we pre-
train an encoder in a contrastive self-supervised manner to
learn generalized representations from real input images of
the whole eye. Given the binary nature of the iris and vis-
ible eyeball masks, we do not use self-supervised learning
for pretraining the two mask encoders as our empirical ex-
periments demonstrate no performance boost with such pre-
training. This encoder, along with the other two encoders
are used in parallel in our multistream setup to extract rel-
evant features. The output representations from these three
encoders are then fused in the feature dimension and utilized
for final gaze estimation. Below we describe the details of
each of the modules of our pipeline.
Eye Region Segmentation. As mentioned above, we aim
to adopt iris and visible eyeball masks in our multistream
pipeline to provide useful gaze-related information in addi-
tion to the standard way of learning gaze from the entire
eye image. To this end, a network is required to segment
eye images into the two desired masks. We thus adopt a
U-Net type model (Ronneberger, Fischer, and Brox 2015)
with two output channels, one for the iris mask and the other
for the visible eyeball mask. The architecture details of this
model are presented in Fig. 1(A). To train this network, we
use UnityEyes simulator (Wood et al. 2016b) and generate a
synthetic image dataset given the scarcity of detailed and ac-
curate datasets with labeled iris and visible eyeball regions.
The network is trained from scratch using MSE loss.
Self-Supervised Learning of Eye Images. To utilize a
model for effective learning of real eye images, we rely on
self-supervised pretraining. This design choice is made to
enable the encoder to be able to learn strong representations
in the presence of different variations and challenging con-
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Figure 1: The proposed framework for our method. First, we train an eye region segmenter using a synthetic database which we
create using a simulator (Wood et al. 2016b). Next, we pretrain the eye image encoder by self-supervised contrastive learning.
Finally, we fine-tune the multistream network for gaze estimation.

ditions (low resolution, noise, occlusions, etc.) often avail-
able in eye images which are generally cropped from facial
images. To this end, we first define a set of transformations
as described in Table 1 which are randomly applied to aug-
ment the images. Following (Chen et al. 2020), we only draw
positive pairs within a minibatch N and the other 2(N − 1)
samples are considered to be negatives. To preserve the gaze
direction, we avoid applying any geometric transformation
which might potentially harm the eye shape and orientation.
Next, as shown in Fig. 1(B), a contrastive approach is used to
learn useful representations using the positive and negative
augmented samples. The contrastive loss (Chen et al. 2020)
is used for pretraining the eye encoder, which is defined as:

Li,j = −log
exp(cosine(zi, zj)/τ)∑2N

k=1 1[k 6=i]exp(cosine(zi, zk)/τ)
(1)

where i and j are the positive pairs, 1[k 6=i] ∈ [0, 1] is a func-
tion which results in 1 only if i 6= k, and the temperature τ
is a scaling parameter for the cosine similarity, set to 0.1.
Encoder, Fusion, and Gaze Estimation Details. The de-
tails of the encoders used for each of the streams are pre-
sented in Fig. 1(C). It should be emphasized that the archi-
tecture details of all three encoders are identical with their
training being the only difference. Subsequent to these three
encoders, the learned representations are concatenated in the
feature dimension and subsequently go through a final en-
coding process prior to gaze estimation. The 3 fully con-
nected (FC) layers used for gaze estimation consist of 256,
128, and 2 units respectively. Output gaze is estimated in
pitch (θ) and yaw (φ) angles based on common practice in

the field (Zhang et al. 2015; Park, Spurr, and Hilliges 2018).
The entire pipeline, including the encoders and gaze estima-
tor are trained using MSE loss.

4 Experiments and Results
Dataset and Preprocessing Steps. As mentioned earlier in
Section 3, to perform eye region segmentation, we generate a
synthetic dataset using the eye simulator, UnityEyes (Wood
et al. 2016b). The simulator provides synthetic eye images
and their corresponding landmarks, which we use to gener-
ate the output masks. We generate a total of 60,000 synthetic
images. To bring the domain of these synthetic data closer to
that of real images, we apply the same augmentations pre-
sented earlier in Table 1. It should be re-emphasized, how-
ever, that this is merely carried to as a preprocessing step,
and contrastive learning is not used for training the U-Net
with the synthetic data.

For training the eye image encoder as well as gaze esti-
mation, we use the EYEDIAP dataset (Funes Mora, Monay,
and Odobez 2014). There are multiple sessions in the dataset
with different illumination conditions, continuous gaze tar-
gets, and head pose. The low resolution images and extreme
occlusions make this dataset highly challenging for gaze
estimation task. We evaluate our proposed solution on the
screen target gaze session (CS/DS) and static and mobile
(SP/MP) head-pose scenario. The input eye images are taken
from the VGA video provided for this session. The raw im-
ages are first normalized to have frontal head-pose and then
converted to a fixed size of 36×60. Later, these images are
converted to gray-scale and histogram equalized. We fol-



Table 2: Performance comparison on EYEDIAP dataset.

Methods LOSO 5-fold
(Zhang et al. 2015) 7.60 -
(Zhang et al. 2017) 6.3 -
(Yu, Liu, and Odobez 2018) 6.50 -
(Park, Spurr, and Hilliges 2018) - 10.3
(Wang et al. 2019) - 9.90
Ours (Multistream Network) 6.29 6.48
Ours (SSL + Multistream Network) 6.15 6.34

low the same person-independent or leave-one-subject-out
(LOSO) protocol as in (Funes-Mora and Odobez 2016), as
well as 5-fold cross-validation following (Park, Spurr, and
Hilliges 2018).
Implementation. We train the eye segmenter U-Net, the 3
encoders, and the gaze estimator network using Adam opti-
mizer with an initial learning rate of 0.00001. For segmenta-
tion, we train the network for 50 epochs using a step learn-
ing rate decay with a step size of 5 and a factor of 0.1. For
the gaze estimator network, first we pretrain the eye encoder
with contrastive learning as discussed earlier, for 50 epochs.
Here, we again use Adam optimizer and a learning rate of
0.0001 with cosine learning rate decay. We then train the
multistream gaze estimator for 25 epochs where we keep
the eye image encoder frozen for 5 epochs and then fine-
tune the whole network for 20 epochs. At this step, we use
a plateau learning rate decay with decay factor of 0.1 and
patience of 3. We train our multistream network with the
same hyperparameters to create a baseline without the self-
supervision. We use a batch size of 32 for the segmentation
task and 128 for the contrastive learning and gaze estimation
task. Our networks are implemented using PyTorch with a
single Nvidia 2080 Ti GPU.
Results. We perform both LOSO and 5-fold evaluation on
the EYEDIAP dataset to evaluate the gaze estimation error
achieved by our proposed self-supervised multistream net-
work. We compare the performance of our proposed frame-
work against the existing state-of-the-art solutions on this
dataset. The results as shown in Table 2 are reported in mean
angular errors across subjects and folds. It is observed from
the table, that our method outperforms the existing bench-
marks by a large margin in both LOSO and 5-fold evalua-
tions. Specifically, our supervised multistream baseline im-
proves the highest benchmark result by a mean angle er-
ror of 3.42◦ in the 5-fold evaluation while achieving similar
performance as (Zhang et al. 2017) with LOSO. With con-
trastive learning, the proposed supervised baseline is further
improved by 0.14◦ in both LOSO and 5-fold experiments.
Impact of Output Labels. To obtain a clear understanding
of the effectiveness of the contrastive learning strategy on
our multistream network beyond improvement of the results,
we also conduct an experiment to examine the sensitivity of
our network by varying the amounts of output labels. We
choose a range of labeled data to fine-tune our network and
compare the performance of gaze estimation. The analysis
as reported in Table 3 reflects the performance comparison
using different amounts of output labels used in the down-

Table 3: Performance of our method using different amounts
of output labels.

Labeled Data(%) Angle Error◦

100% 6.34
75% 6.86
50% 7.01
25% 7.45

stream fine-tuning. It can be observed that when we use only
75% and 50% of the labeled data, the gaze estimation error
is still quite low. As we keep decreasing the percentage of la-
beled data to only 25%, our network can still maintain a very
stable performance and outperform existing state-of-the-art
methods on the 5-fold evaluation. This validates the robust-
ness of our multistream network through the self-supervised
step.

5 Conclusion and Future Work
This paper presents a novel multistream neural network for
gaze estimation. Our model relies on a mask of the visible
eyeball, a mask of the iris, and the entire image of the eye.
To obtain the eye masks, we generate a synthetic dataset and
use it to train a U-Net model for eye region segmentation.
This segmenter is then frozen and used to generate the masks
from real eye images. The masks, as well as the original eye
image, are then passed to three separate encoders. The ob-
tained embeddings are then fused to be used for gaze esti-
mation. To allow the eye image encoder to learn more gen-
eralized representations, we use contrastive learning for pre-
training. We validate our method on the EYEDIAP dataset
and demonstrate that our method outperforms other works
in the area with both 5-fold and LOSO schemes, while per-
forming consistently and robustly even when small subsets
of output labels are used for downstream gaze estimation.
For future work, we plan to improve the eye region segmen-
tation and perform more in-depth analysis of the segmenta-
tion performance. We would also like to further explore the
effects of self-supervision on our gaze estimation model and
experiment with additional augmentations.

References
Amadori, P. V.; Fischer, T.; Wang, R.; and Demiris, Y. 2021.
Predicting Secondary Task Performance: A Directly Action-
able Metric for Cognitive Overload Detection. IEEE Trans-
actions on Cognitive and Developmental Systems, 1–1.
Andrist, S.; Tan, X. Z.; Gleicher, M.; and Mutlu, B. 2014.
Conversational gaze aversion for humanlike robots. In 2014
9th ACM/IEEE International Conference on Human-Robot
Interaction, 25–32.
Baluja, S.; and Pomerleau, D. 1994. Non-intrusive gaze
tracking using artificial neural networks. Technical report,
Pittsburgh, PA, USA.
Chaitanya, K.; Erdil, E.; Karani, N.; and Konukoglu, E.
2020. Contrastive learning of global and local features for
medical image segmentation with limited annotations. arXiv
preprint arXiv:2006.10511.



Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In International Conference on Machine Learn-
ing, pp. 1597–1607.
Funes Mora, K. A.; Monay, F.; and Odobez, J.-M. 2014.
Eyediap: A database for the development and evaluation of
gaze estimation algorithms from rgb and rgb-d cameras. In
Proceedings of the Symposium on Eye Tracking Research
and Applications, 255–258.
Funes-Mora, K. A.; and Odobez, J.-M. 2016. Gaze esti-
mation in the 3d space using rgb-d sensors. International
Journal of Computer Vision, 118(2): 194–216.
Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond,
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