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Abstract

E-commerce platforms generate vast amounts of customer
behavior data, such as clicks and purchases, from millions
of unique users every day. However, effectively using this
data for behavior understanding tasks is challenging because
there are usually not enough labels to learn from all users
in a supervised manner. This paper extends the BERT model
to e-commerce user data for pretraining representations in a
self-supervised manner. By viewing user actions in sequences
as analogous to words in sentences, we extend the existing
BERT model to user behavior data. Further, our model adopts
a unified structure to simultaneously learn from long-term
and short-term user behavior, as well as user attributes. We
propose methods for the tokenization of different types of
user behavior sequences, the generation of input representa-
tion vectors, and a novel pretext task to enable the pretrained
model to learn from its own input, eliminating the need for
labeled training data. Extensive experiments demonstrate that
the learned representations result in significant improvements
when transferred to three different real-world tasks, particu-
larly compared to task-specific modeling and multi-task rep-
resentation learning.

Introduction

The choice of data representation, i.e., how to extract mean-
ingful features, has significant impact on the performance of
machine learning applications (Bengio, Courville, and Vin-
cent 2013). Therefore, data processing and feature engineer-
ing have been key steps in model development. To extend
the applicability of the models, recent research on represen-
tation learning aims to discover the underlying explanatory
factors hidden in raw data. With rapid advances in this direc-
tion, we have witnessed breakthroughs in the areas of com-
puter vision (Doersch, Gupta, and Efros 2015; Sharif Raza-
vian et al. 2014; Simo-Serra et al. 2015) and natural lan-
guage processing (NLP) (Mikolov et al. 2013; Pennington,
Socher, and Manning 2014; Lin et al. 2017).

Similarly, for building user-oriented industrial applica-
tions like next purchase prediction and recommendation,
much effort has been spent on understanding business mod-
els and user behavior for creating useful features (Richard-
son, Dominowska, and Ragno 2007; Covington, Adams,
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and Sargin 2016). However, this is a time-consuming and
application-specific process. It is also challenging to reuse
these features, or to share the gained knowledge between
different services and tasks.

To address the issue of isolated feature engineering and
task-specific design, prior work has explored pretraining
and transfer learning ideas. For example, multi-task learn-
ing (MTL) has shown promising results (Ni et al. 2018).
However, MTL has intrinsic challenges, e.g., deciding which
tasks to learn jointly (Standley et al. 2019), or how to weigh
tasks to achieve optimal performance (Kendall, Gal, and
Cipolla 2018). More importantly, the training still hinges on
large amounts of well-annotated user labels.

Inspired by the BERT model, which has been immensely
useful across a host of NLP tasks (Jacob et al. 2019; Lan
et al. 2020), recent work proposed pretraining user represen-
tations on unlabeled behavior data in a self-supervised man-
ner (Wu et al. 2020; Yuan et al. 2020). However, prior work
does not take inherent differences between different types of
user behavior into account. Our proposal, UserBERT, simul-
taneously learns from three categories of user data, i.e., long-
term and short-term behavior, as well as user attributes, via a
unified architecture. In this work, we consider short-term be-
havior as user actions during one browsing session, includ-
ing clicks, searches, and page views. Long-term behavior
refers to user interest over longer time frames and includes,
for example, preferences for particular shops or item genres.
For these two behavior types, we first present distinct strate-
gies to discretize them into sequences of behavioral words.
Compared to modeling single user actions sequentially, the
proposed discretization leads to better generalization. The
token representation of these behavioral words is computed
by concatenation and averaging of the word embeddings of
the attribute IDs (e.g., shop, price, or product genre) of each
action, and this is followed by the summation of token, posi-
tion and segment embeddings. These representation vectors
are then aligned with the word embeddings of user categor-
ical attributes as the input to UserBERT. With this input,
we design a novel pretext task, masked multi-label classi-
fication. The UserBERT model is pretrained via optimizing
the multi-label classifications of the multiple attributes in the
masked behavioral words.

Despite the parallels between user behavior and sen-
tences, there are substantial differences and challenges in



designing the learning procedure in a consistent way. Our
model is able to deal with heterogeneous user behavior data,
and achieve generalization via effective tokenization and the
pretraining task. The UserBERT model explores integrat-
ing various types of user data in a unified architecture and
learning generic representations with self-supervised sig-
nals. In our experiments, the pretrained model is fine-tuned
on three different real-world tasks: user targeting, user at-
tribute prediction, and next purchase genre prediction. The
results show that UserBERT outperforms task-specific mod-
eling and multi-task learning based pretraining.

Our contributions are summarized as follows:

* We propose UserBERT to pretrain user representations
by making the analogy of actions in behavior sequences
to words in sentences. We eliminates the need for collect-
ing additional user annotation.

» UserBERT adopts a unified model architecture to enable
simultaneous learning from heterogeneous data, includ-
ing long-term and short-term behavior as well as demo-
graphic data.

* We design the discretization of user raw data sequences,
the generation of the input representation and a novel pre-
text task for pretraining.

* We evaluate UserBERT in extensive experiments. Com-
pared with task-specific models without pretraining and
multi-task learning based pretraining models, the pro-
posed model achieves higher accuracy on three real-
world applications.

Related Work
Pretraining and Transfer Learning

Recent studies have demonstrated that pretraining on large,
auxiliary datasets followed by fine-tuning on target tasks is
an effective approach (Oquab et al. 2014; Donahue et al.
2014; Hendrycks, Lee, and Mazeika 2019; Ghadiyaram et al.
2019). Multi-task learning has been one of the commonly
adopted approaches for pretraining due to its ability to im-
prove generalization (Zhang and Yang 2017; Ruder 2017,
Gong et al. 2020). It is shown that the pretrained MTL mod-
els can boost performance even when transferred to unseen
tasks (Liu et al. 2015; Ni et al. 2018). Despite its success,
MTL still has many challenges, such as negative transfer and
the learning adjustment between different tasks (Guo et al.
2018). Also, MTL requires large amounts of well-annotated
labels to produce satisfying outputs. There are two common
forms of adaptation when transferring the pretrained models
to a given target task, i.e., feature-based in which the pre-
trained weights are frozen, and directly fine-tuning the pre-
trained model (Peters, Ruder, and Smith 2019). We fine-tune
pretrained models in our experiments.

Self-Supervised Learning

Deep learning models can already compete with humans on
challenging tasks like semantic segmentation in the CV area
(He et al. 2015) as well as a few language understanding
tasks (Liu et al. 2019). However, such success relies on ad-
equate amounts of quality training data, which can be ex-
pensive to obtain (Kolesnikov, Zhai, and Beyer 2019). As

a result, a lot of research efforts aim to reduce dependency
on labeled data. Self-supervised learning (SSL), a subclass
of unsupervised learning, has been drawing more attention
since the recent advances in the NLP field. Instead of using
supervision signals, SSL only requires unlabeled data and
trains models via formulating a pretext learning task. There
are two main types of pretext tasks: context-based (Pathak
et al. 2016; Noroozi and Favaro 2016; Sermanet et al. 2018;
Wu, Wang, and Wang 2019) and contrastive-based (Hjelm
et al. 2019; Chen et al. 2020). BERT (Jacob et al. 2019),
which our model is built upon, learns the contextual infor-
mation through bi-directional transformers (Vaswani et al.
2017) in a self-supervised manner.

User Modeling

To build user-oriented machine learning applications, a key
challenge is finding an expressive representation of user
bevhavior data, so that models can make accurate predic-
tions. For that reason, much effort has been spent on data
preprocessing and transformations (Zhu et al. 2010). Deep
learning models have successfully mitigated the dependency
on human efforts due to its ability to capture underlying
representations in raw data (Zhou et al. 2018; Li and Zhao
2020). However, these models need massive supervision sig-
nals for training, and they are mostly designed for specific
tasks like recommendation (Pei et al. 2019; Sun et al. 2019b)
and click-through rate prediction (Zhou et al. 2019).

Despite the success of these deep learning models, they
fail to generate promising results for real-world industrial
tasks with limited labeled data. To deal with this issue, the
methodology that pretrains universal user representations on
massive user data, and then fine-tunes them for downstream
tasks is explored. The goal is to learn a universal and ef-
fective representation for each user that can be transferred to
new tasks (Ni et al. 2018; Gong et al. 2020). However, MTL-
based pretraining still requires the collection of user labels.
Also, it is limited by inherent shortcomings to achieve op-
timal results (Kendall, Gal, and Cipolla 2018; Guo et al.
2018).

Recent work proposes learning user representations in a
self-supervised way. For instance, PTUM applies Masked
Behavior Prediction and Next K Behaviors Prediction to pre-
train user models (Wu et al. 2020). CL4SRec uses a con-
trastive learning framework and proposes three data aug-
mentation methods to construct contrastive tasks for pre-
training (Xie et al. 2020). However, none of these works
consider the intrinsic discrepancies of user behavior types.
Also, the pretraining that sequentially models every single
user actions is interfered with the randomness of user be-
havior, and fails to learn underlying user preferences.

The Proposed Approach

In this section, we first briefly review the BERT model, and
then elaborate on how to extend it to user data including
behavior sequences and demographic attributes.

The BERT Model

BERT is a language representation model that pretrains deep
bidirectional representations by jointly conditioning on both
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Figure 1: Tokenization and input representation of long-term and short-term user behavior and attribute data. 7o form
behavioral words, we discretize long-term behavior into 24-hour intervals, and segment short-term sequences when there is
a break of longer than 30 minutes between two actions. The word embeddings of the attribute IDs of each action are first
concatenated. Then, the token representation for one time interval is constructed by the mean of all action embeddings within
the interval. The representation in the sequence is the sum of token embeddings and the embeddings for encoding position and

segment.

left and right contexts in all encoding layers (Jacob et al.
2019). The input to the BERT model is a sequence of tokens
that can represent both a single text sentence and a pair of
sentences. These discrete tokens consist of words and a set
of special tokens: separation tokens (SEP), classifier tokens
(CLS) and tokens for masking values (MASK). For a token
in the sequence, its input representation is a sum of a word
embedding, the embeddings for encoding position and seg-
ment.

The BERT model is pretrained with two tasks, masked
language modeling (MLM) and next sentence prediction. In
MLM, the input tokens are randomly masked and the BERT
model is trained to reconstruct these masked tokens. In de-
tail, a linear layer is learned to map the final output features
of the masked tokens to a distribution over the vocabulary
and the model is trained with a cross entropy loss. In next
sentence prediction, the inputs are two sampled sentences
with a separator token SEP between them. The model learns
to predict whether the second sentence is the successor of
the first. A linear layer connecting the final output repre-
sentations of the CLS token is trained to minimize a cross
entropy loss on binary labels. Many recent research works
focus on extending the BERT model to areas beyond NLP,
and successfully achieved state-of-the-art results (Sun et al.
2019a; Lu et al. 2019; Su et al. 2020; Qi et al. 2020).

UserBERT

Tokenization of User Behavior Sequences Our goal is
to learn generic user representations that characterize users
based on their long-term preferences as well as recent inter-

ests. We decide not to sequentially model single actions in
long-term and short-term user data. While such modeling is
suitable for certain tasks, it is susceptible to overfitting when
learning generic user representations. Instead, we learn from
a sequence of clustered user actions, in which a cluster rep-
resents a routine or a spontaneous interest. Customers often
make online purchases with specific intentions, e.g., shop-
ping for a shirt, comic books, or a gift for Mother’s Day.
Many customers have long-standing preferences for partic-
ular stores and sales are heavily impacted by seasonality.
These continuous or related actions form a *word’ in a be-
havior sequence. Similarly, we consider the same regarding
short-term user behavior. Users commonly browse web con-
tent, moving between pages on an e-commerce site. During
this time period, in order to capture the user’s interest, we
aim to estimate the theme or product genre rather than the
specific order of individual actions.

Therefore, we first need to segment raw action data into a
sequence of “behavioral words’ for each user, analogous to
words in a sentence. As described by Figure 1, we adopt dif-
ferent approaches for long-term and short-term data. Data
representing long-standing user preferences is segmented
into 24-hour intervals from 4 AM of one day to 4 AM of
the next day. Short-term data is segmented if there is a time
interval larger than 30 minutes between two actions, similar
to the processing steps in (Grbovic and Cheng 2018).

Input Representations In order to enable bidirectional
representation learning, we transform the behavioral word
sequence into a sequence of input embeddings. We first in-
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Figure 2: Pretraining UserBERT. The behavioral word representation vectors E;, in input sequences are randomly masked
(zeroed-out), and the masked input is passed through UserBERT. The model is trained to reconstruct the attributes in these
masked words. For each attribute, an output layer is connected to the final hidden representations h;, at the masked positions,

and is learned by minimizing the multi-label classification loss.

troduce the concept of action and attribute in user behavior
data: The action indicates what a user does, e.g., making a
purchase or obtaining points for using a service, while the
action attributes include, for example, the type of the action,
the shop name, the item genre, and price range, as shown
in Figure 1. We choose different actions and their corre-
sponding attributes in our dataset to represent long-term and
short-term user behavior, and propose separate tokenization
strategies for them since we expect to extract inherent user
preferences from regular routines over longer time periods,
and short-term interests from recent, temporary interactions.
In combination with user attribute data, the learned repre-
sentations are comprehensive and expressive.

To generate input representations, all attribute IDs are first
mapped to fixed-length continuous vectors. These attribute
vectors are concatenated for each action, obtaining an action
embedding. Subsequently, the token representation for one
time interval is obtained by taking the mean of all action em-
beddings within this interval. Finally, the input embedding
vector is obtained by summing the token embeddings and
the embeddings for encoding position and segment. Segment
embeddings are used to differentiate the different types of
user data, i.e., long-term user behavior, short-term behavior,
and user profile data. Long- and short-term user data share
the same processing steps above, but each has their own def-
initions for token position. For long-term sequences we use
the number of days counted from the starting point of the
collected training data, for short-term data it is the number
of hours. In order to incorporate non-temporal user attribute
data to our modeling, we consider categorical attributes like
gender as tokens in the user input sequence. Continuous-
valued attributes, such as age, are segmented by heuristics
and converted into categorical attributes. After mapping at-
tributes to word embedding vectors, these are added to the

segment embedding. Note that there is no position embed-
ding for user-attribute embeddings since no order informa-
tion needs to be captured for these user attributes. The input
sequence for each user is formed by aligning the generated
representation vectors of user behavior as well as the em-
beddings of user attributes, see Figure 1.

Pretraining Tasks The generated input sequences allow
us to make minimal changes to the BERT architecture and
follow the practice in (Jacob et al. 2019). We then pretrain
our model to learn bidirectional representations. While the
language modeling task seems to naturally apply to our set-
ting, reconstructing the masked ’behavioral words’ requires
modification since these words contain an assembly of user
actions rather than individual words used in the original
BERT model. We implement masked multi-label classifica-
tion to predict multiple attributes in the masked behavioral
words. More precisely, for each target attribute in a masked
token, a linear layer is connected to the final representations
which maps to a distribution over the attribute vocabulary,
as illustrated in Figure 2. For one masked token, the training
loss is the sum of cross entropy losses of all user attribute
predictions, e.g., the prediction of shop IDs, genre IDs, etc.
The final loss for one input sequence is the sum of the losses
of all masked tokens.

For masking input tokens, we follow a similar process as
BERT: 15% of tokens are selected uniformly, where 80%
of the time the token is zeroed-out and remains unchanged
otherwise. We distinguish between three segments of behav-
ioral words from the three types of user data, i.e., long-term,
short-term and user attributes. For long and short-term seg-
ments, we apply the masking-prediction for pretraining our
model, while we do not mask user attributes. To pretrain
UserBERT, we first randomly sample a mini-batch of raw
user sequences. Then, they are tokenized and transformed



Table 1: Actions and attributes in user behavior data

Actions

Attributes (with vocabulary size)

long-term purchase, point usage

action type (2), channel (742), expense range (17),
shop (85,124), genre (11,438), hour (24)

short-term click, search, page view

action type (3), shop (40,804),
genre (10,386), device type (2)

to input representations, which is followed by the masking
step. In the end, the masked sequences are passed through
the model, and the model is trained by minimizing the pre-
diction error for reconstructing what attributes are inside
the masked tokens. For each attribute type, a linear layer is
learned to map the hidden representations of masked tokens
to distributions over its vocabulary for conducting the multi-
label classification.

Let ¢ be a randomly sampled index for masking, w; and
w\; be the masked behavioral word and the input after mask-
ing to the UserBERT. Also, let n be the number of target at-
tributes for reconstruction prediction, and f*(w\;|6) be the
final output vector after softmax layer for k-th attribute in
the masked w;. The loss of the UserBERT model is:

n

L(0) = Eynp,in{1,..ty Z LCE(yf,fk(w\i\H)% (1
=1

where w is a uniformly sampled input representation se-
quence from the training dataset D, ¢ is the total number
of behavioral words in the long-term and short-term data,
y¥ is the ground truth binary vector for the k-th attribute
with its corresponding vocabulary size in the masked w; and
Lcg is the cross entropy loss for the multi-label classifica-
tion. Note that long-term and short-term user behavior have
different types and number of attributes in actions. With
the pretrained models, we leverage them for fine-tuning on
downstream tasks.

Experiments

We experimentally verify whether the proposed UserBERT
model is able to yield generic user representations, and eval-
uate the performance when applying it to different tasks via
transfer learning.

Experiment Settings

Datasets Datasets are collected from an online ecosystem
of a variety of services, including an e-commerce platform,
a travel booking service, a golf booking service and others.
Customers can access all services via a unique customer ID,
and their activities across the ecosystem are linked together.

We consider two actions as long-term user behavior. The
first one is the purchase action on the e-commerce platform,
and the second one is a point usage action. Points are earned
whenever purchases are made, or when certain services are
used. Points can be spent on any service within the ecosys-
tem. The channel attribute represents from which service

users obtain points or where they spend points. We collected
purchase and point usage data over a three-month period.
For short-term behavior, we focus on recent activities on the
e-commerce website, i.e., browsing and search history. The
relevant actions are clicks, page views, and searches, col-
lected over a shorter time period of seven days. More de-
tailed information on actions and attributes in the experi-
mental data are shown in Table 1.

The user attribute data is registered customer information
such as age and gender. The unique number of users in the
dataset is 22.5M, the number of daily purchase and point us-
age samples is approximately 5SM, and the number of short-
term data samples is approximately SOM. The data is pre-
processed to generate user action sequences.

Target Tasks Our pretrained user model is trained in a
general manner and can be adapted to a variety of user
understanding tasks. We fine-tune the self-supervised pre-
trained model to three real-world downstream tasks that aim
to improve customer experience. The datasets of the three
target tasks are split 80-20 to create training and testing
datasets for fine-tuning.

* The user targeting task is to identify potential new cus-
tomers for certain services or products, and it is formu-
lated as a binary classification problem, indicating inter-
est or no interest in a particular service. Users who re-
sponded positively to a target service/product, e.g., di-
rectly via a purchase or indirectly by clicking on a ban-
ner, form the set of positive labeled data, while negative
ones are uniformly sampled from the remaining set of
users with a 3:1 ratio. A new dataset is collected after the
time period of the data used for pretraining.

 The user attribute prediction task is predicting different
user attributes, e.g., whether or not a customer owns a
pet. It is also posed as a classification problem, where
ground truth labels are obtained through questionnaires.

* The next purchase genre prediction task is a multi-class
prediction problem with the aim to predict the next genre
of items that a user will purchase on the e-commerce plat-
form. The dataset is created from the one-month user his-
tory following the pretraining time period.

Model Baselines UserBERT is compared to direct mod-
eling without pretraining and to multi-task learning (MTL)-
based pretraining. The MTL models apply a multi-tower ar-
chitecture in which each tower encodes one type of user
data. For the MTL-based baselines, different types of user
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Figure 3: Model fine-tuning performance comparison for the user targeting task. The charts show the results for task of
predicting whether customers will user either of two different services (case I and case 2). For each case we plot the ROC AUC

and accuracy metrics vs. the number of training epochs.

data are passed through corresponding encoders, and the en-
coded representations are combined at the last layer before
connecting to multiple training tasks. The dimension of the
combined representations is set to 128 for all MTL models.

We collect user labels across the services in the ecosys-
tem and train MTL models with 12 user attributes as pre-
training tasks. These pretraining tasks classify the categories
of user activities such as the usage frequency of certain ser-
vices or attributes like type of occupation. We will not reveal
the details of the tasks due to data governance. By learning
and sharing across multiple tasks, the yielded user represen-
tations are considered to be generalized and applicable for
transferring to downstream tasks.

* Wide&Deep+MTL: The Wide&Deep model is selected
for comparison because it represents a traditionally ap-
plied approach for modeling e-commerce data. Although
the model cannot directly handle user behavior data as se-
quences, we generate fixed-length (1130-d) embeddings
by aggregating behavior data and inputting them to the
deep part of the model (Cheng et al. 2016). Categorical
user attribute data is mapped to word embeddings and
concatenated before feeding it into the wide part of the
model. The wide part is a linear model, while the dimen-
sions of the 4 hidden layers for the deep side are 512,
256, 256 and 128, respectively.

¢ LSTM+MTL: LSTM networks are commonly used to
model sequential data (Ni et al. 2018). The same dis-
cretization and input generation are applied to long-term
and short-term user behavior for this model. It is a 3-
tower model, in which two LSTM networks model the
two types of user behavior and user attributes are mod-
eled in the same way as the Wide&Deep model. The di-
mension of the hidden state in all LSTM encoders and the
length limitation of both long-term and short-term data
are set to 128.

* Transformer+MTL: The architecture is the same as the
LSTM+MTL model above but with two different Trans-
former encoders (Vaswani et al. 2017) to model long and
short-term user data separately. The length of input user
behavior sequence to the encoders is limited to 128 as
well. We pretrain the model via minimizing the summed
cross entropy loss of the multiple training tasks.

e UserBERT: The proposed self-supervised learning

Table 2: User targeting task. Best ROC AUC and Accuracy
comparisons after fine-tuning.

ROC AUC Accuracy
Model Casel Case2 Casel Case2
Wide&Deep+MTL  68.14 77.81 70.61 73.67
LSTM+MTL 66.42 60.28 70.38 69.27
Transformer+MTL  68.31 81.21 71.11 77.19
UserBERT 67.98 84.20 72.28 79.36

based pretraining model, which simultaneously learns
from long- and short-term actions and user attributes.
Pretraining is done by reconstructing attributes in masked
tokens via multi-label classifications.

Experimental Setup For UserBERT, we use the same no-
tations as BERT, and set the number of Transformer blocks
L to 4, the hidden size H to 128, and the number of self-
attention heads A to 4. The input sequence length of both
long-term and short-term data is limited to 128. For fair
comparison, we pretrain all models using the Adam opti-
mizer with a learning rate of 10~* and batch size of 16. We
fine-tune models using the same learning rate and a batch
size of 128. Pretraining of 400K batches of the UserBERT
model takes approximately 12 hours using our PyTorch im-
plementation, running on two GeForce RTX 2080 Ti GPUs.

For fine-tuning each target task, the combined encoder
representations of the MTL-based models are fed to an out-
put layer, while the fine-tuning of UserBERT is done by
connecting the hidden representations of the first token to
an output layer for each task. After plugging in task-specific
inputs and outputs, we fine-tune the parameters of pretrained
models end-to-end.

Results

User Targeting We show the results for two different ser-
vices. The sizes of the datasets are 30,204 and 31,106 sam-
ples, respectively. Compared to the size of the pretraining
dataset, the use cases of this task only have few labeled sam-
ples. Classification performance per epoch in terms of accu-
racy and ROC AUC are shown in Figure 3. Table 2 compares
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Figure 4: Model fine-tuning comparison on user attribute
prediction tasks. ROC AUC metric vs. number of training
epochs for different models on two different user attribute
prediction tasks.

the best ROC AUC and accuracy results for the same two
cases. The LSTM model, which sequentially models user
behavior, has relatively low accuracy, indicating that the se-
quential order of user actions does not provide useful infor-
mation for this task.

From our experience, the user targeting task focuses
on patterns from relatively static user preferences. The
Wide&Deep model shows competitive performance, achiev-
ing the highest ROC AUC for case 1, which is reasonable
since our exploratory analysis indicates that user attributes
are important features. The performance of the Transformer-
based models reveal that the underlying explanatory factors
for this task can be captured by attention networks. User-
BERT outperforms other models in terms of accuracy by a
substantial margin.

User Attribute Prediction In general, it is challenging to
predict user attributes because predictive signals in the be-
havior data are sparse. In other words, the target user at-
tributes may not be strongly correlated to behavior data.
Therefore, this prediction task evaluates the model’s ability
to discover hidden explanatory factors in the raw data. We
show experimental results for two use cases: one is to pre-
dict whether a user has a car, while the other one is to predict
if a user is a parent. These two tasks are denoted as has_car
and is_parent.

The dataset for the has_car task contains 448,501 sam-
ples and the one for the is_parent task contains 400,268.
The classification results of 10-epoch fine-tuning are shown
in Figure 4. Table 3 compares the best ROC AUC results
in 10 epochs. From the has_car results, we observe that
the Wide&Deep model shows good initial performance, and
during training other models eventually reach similar accu-
racy. We believe this is due to the fact that user features such
as age and location are important features for this task. It
seems challenging for models to extract other discriminative
patterns from either long-term or short-term user behavior.
On the other hand, whether a user is a parent or not seems
to present different characteristics in terms of how they be-
have on an e-commerce or travel booking platform. These
patterns can be captured by deep learning models like User-
BERT and Transformer-based models. UserBERT is able to
match and eventually outperform the baseline models.

Table 3: User attribute prediction. Best ROC AUC com-
parison after fine-tuning.

Model Has car Is parent
Wide&Deep+MTL  78.61 78.52
LSTM+MTL 77.73 77.06
Transformer+MTL 78.54 80.43
UserBERT 78.56 80.99

Table 4: Next purchase genre prediction. Best mAP@10
comparison after fine-tuning.

Model mAP@10(%)
Popular Genres 4.22
Wide&Deep+MTL 7.65
LSTM+MTL 8.13
Transformer+MTL 8.62
UserBERT 10.90

Next Purchase Genre Prediction The dataset contains
data from 586,130 users, and we fine-tune each pretrained
model for 10 epochs. The mean average precision for the
top 10 purchased genres (mAP@ 10) comparison is shown in
Table 4. The UserBERT model outperforms baseline mod-
els by a large margin. This task requires understanding of
both long-term preferences as well as recent interests of cus-
tomers. Prediction models should be able to identify candi-
date genres from user habits over a longer time range, and
then identify likely ones as prediction results from recent in-
terest trends. More specifically, a model should understand
how users typically use services in the ecosystem as well as
what they are currently interested in. The architecture of the
baseline models learns from different types of user data sep-
arately and combines the last-layer representations for train-
ing. It fails to sufficiently capture the correlations. In con-
trast, UserBERT benefits from the unified structure of the
user data and captures more accurate correlations, not only
within certain types of user behavior, but also between dif-
ferent behavior types via attention networks.

Since it is common that users make purchases from only
a subset of genres, we also devised an intuitive but strong
baseline that predicts the most popular genres, ranked by the
total number of purchases, and compared it against all pre-
trained models. With an mAP@10 of 4.22%, this model’s
accuracy is significantly lower, demonstrating the effective-
ness of the pretrained models.

Ablation Studies

We perform additional experiments to better understand the
effects of certain aspects of the pretraining and fine-tuning
framework. More specifically, we analyze the effect of the
pretraining step of UserBERT and how the number of la-
beled samples affects the performance of fully supervised
pretraining methods.

Effect of Pretraining We directly apply UserBERT to the
user targeting task without pretraining to verify whether it
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Figure 5: Effect of pretraining on UserBERT. ROC AUC
comparison of UserBERT with and without pretraining on
the user targeting task.
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Figure 6: Effect of pretraining on Transformer+MTL.
Comparison between Transformer-based MTL models with
no pretraining, pretraining with 30% of labels, and pretrain-
ing with all labels on the user targeting tasks.

benefits from the pretraining step. The ROC AUC com-
parison between UserBERT with and without pretraining
is shown in Figure 5. The pretrained models outperform
the models trained from scratch significantly. This indicates
that the pretraining step extracts useful information that al-
lows fine-tuning to boost performance for downstream tasks.
From the error curves during training, we also observe that
models tend to overfit quickly without pretraining. The pre-
trained UserBERT model achieves more generic user rep-
resentations and yields significant accuracy improvements
when adapted to new tasks.

Effect of Additional Pretraining Labels We hypothesize
that, compared to Transformer-based MTL, the learning of
UserBERT is not limited by the multiple training tasks and
is able to learn more expressive and generic representations
from the input.

To further demonstrate the advantage of the pro-
posed method over MTL-based pretraining, we pretrain
Transformer-based MTL models with different numbers
of labels before fine-tuning. We evaluate three training
regimes: no pretraining, using 30% of labels and using all la-
bels. The comparison indicates that the performance of MTL
is significantly affected by the number of training samples.
As shown in Figure 6, more labeled data contributes to per-
formance gains on the user targeting task. Models without
the pretraining step show the worst performance.

In contrast, the pretraining of UserBERT does not require
any additional collection of supervision signals, and there-
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Figure 7: Effect of discretization of user actions into ’be-
havioral words’. The plot shows fine-tuning performance
results with and without discretization into sessions (’sess.”)
on user targeting (above) and user attribute prediction (be-
low) tasks.

fore is not impacted by either the quantity or the quality of
user annotations.

Effect of the Discretization of User Behavior In this
study, instead of modeling every single user action, we dis-
cretize user action sequence into behavioral words for bet-
ter generalization on downstream tasks. Figure 7 depicts the
fine-tuning performance comparisons between pretrained
models with and without the discretization of raw user action
sequences for the user attribute prediction and user target-
ing tasks. In terms of ROC AUC comparison, the pretrained
model with discretization improve fine-tuning performance
on 2 of the 4 cases shown in the figure. Experimental re-
sults show that the discretization of user behavior improves
next purchase genre prediction on mAP@10 by 2.1%. In ad-
dition, the model without the discretization into behavioral
words tends to overfit quickly as demonstrated in Figure 7.

Conclusion

This paper introduces a new method to model user behavior
by adapting the BERT model, which has made significant
improvements in the NLP domain. It explores and demon-
strates the possibility for user-oriented machine learning
tasks to alleviate the dependency on large annotated datasets.
We present UserBERT for pretraining user representations
in a self-supervised manner on short-term and long-term
behavior as well as user profile data. We provide a novel
method to tokenize raw user behavior sequences into be-
havioral words, which is demonstrated to reduce overfitting
during pretraining. Extensive experiments show that a well-
designed pretrained model with self-supervision is able to
outperform fully supervised learning models when trans-
ferred to downstream applications.
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